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Abstract: The paper examines three selective schemes for the smoothed finite element method (SFEM) 

which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible 

finite element method (FEM). These selective SFEM schemes were formulated based on three selective in-

tegration FEM schemes with similar properties found between the number of smoothing cells in the SFEM 

and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly 

incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, 

scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to iso-

tropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell 

problems. Results of the numerical study show that the selective SFEM schemes give more accurate results 

than the FEM schemes. 

Key words: finite element method (FEM); smoothed finite element method (SFEM); strain smoothing; 

smoothing cell; selective 

 

Introduction 

In the finite element method (FEM), standard lower-
order quadrilateral isoparametric elements are the most 
popular and widely used for solving elasticity prob-
lems. However, they have two serious drawbacks: (1) 
They are overly stiff in bending problems due to the 
shear locking phenomenon; (2) They lock in nearly in-
compressible problems when the bulk modulus be-
comes infinite. To overcome these drawbacks, the re-
duced integration technique has been used, which 
saves a great deal of computational cost due to the use 
of only one point at the element centroid to evaluate 

the stiffness matrix instead of four integration points. 
This technique was devised by Zienkiewicz et al.[1] to 
alleviate shear locking in plate and shell bending. This 
technique was also shown to provide the added benefit 
of eliminating spurious constraints in incompressible 
applications, as demonstrated by Malkus and Hughes[2]. 
Unfortunately, in most cases reduced integration leads 
to artificial zero energy modes, precluding general ap-
plication of this method. In many cases, selective re-
duced integration establishes a good compromise be-
tween efficiency (avoiding locking) and stability 
(avoiding artificial zero energy modes). The idea is to 
split the strain energy into individual parts and apply 
different integration rules to evaluate the correspond-
ing contributions to the stiffness matrix.   

So far, three selective reduced integration schemes 
are widely used. The first scheme (S1) and the second 
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scheme (S2) are used to overcome the incompressible 
locking[3]. The idea of the first scheme is to decompose 
the material properties matrix into two parts, the volu-
metric part and non-volumetric part, and the stiffness 
matrix is also decomposed into two parts correspond-
ingly. Then, the reduced integration is used only on the 
volume-part and the full Gauss integration is used on 
the remaining-part. However, in general, anisotropic 
and/or nonlinear situations, an explicit segregation of 
the contributions to the matrix equations into volumet-
rically stiff and non-volumetric terms as the scheme 1 
is not always apparent. This limits the generality of 
scheme 1. In principle, a decomposition of the material 
tangent stiffness into dilatational, deviatoric, and di-
latational-deviatoric coupling terms may always be 
achieved. Hughes[3,4] generalized the selective integra-
tion procedures to anisotropic and nonlinear media in 
the B-bar method, which is referred to in this paper as 
the second selective integration scheme (S2). The idea 
of this scheme is to improve the dilatational part of the 
strain-displacement matrix by using reduced integra-
tion and the full Gauss integration is still used to calcu-
late the stiffness matrix from the “improved” strain-
displacement matrix. The third scheme (S3) is used to 
overcome the shear locking phenomenon in bending 
problems[1]. Reduced integration is used for the shear 
part and full integration for the remaining parts in cal-
culating the stiffness matrix.  

To overcome these problems in the FEM, Liu et 
al.[5,6] proposed, for the first time, a smoothed finite 
element method (SFEM) by combining the existing 
FEM technology and the strain smoothing technique of 
meshfree methods. In this method, elements are used 
as in the FEM with smoothing operations performed 
over the elements. Depending on the accuracy and sta-
bility requirements, an element may be further subdi-
vided into several smoothing cells with the smoothing 
operations then performed on each smoothing cell 
within an element. The Galerkin weak form is used as 
in the FEM, but the smoothed strains are used for 
computing the stiffness matrix. With a constant 
smoothing function, area integrations over the cell in 
the weak form become line integrations along the cell 
boundaries. Hence, no derivatives of the shape func-
tions are involved in computing the field gradients to 

form the stiffness matrix. Numerical studies have dem-
onstrated that the SFEM has some advantages over the 
standard FEM using 4-node isoparametric elements. 
For example, (1) The SFEM gives better results than 
the FEM in both displacement and energy because the 
SFEM stiffness is less than that of the FEM; (2) The 
domain discretization in the SFEM is more flexible 
than in the FEM so even severe distorted, tile or po-
lygonal elements can be used; (3) The field gradients 
are computed directly using only the shape functions 
themselves; (4) The construction of shape functions 
can be much easier than in the FEM, which practically 
allows explicit interpolations of field variables; and (5) 
Many existing FEM algorithms can be easily modified 
and incorporated into the SFEM. Most importantly, 
these good features are gained without increasing the 
effort in both modeling and computation, and the 
changes to existing FEM codes are very minimal. All 
these features have been demonstrated in detail by Liu 
et al.[5,6] using many numerical examples and various 
complex elements including extremely distorted quadri- 
lateral elements, polygon, and tile elements. However, 
the problems relating to incompressible and shear lock-
ing phenomena have not yet been studied and effective 
SFEM schemes to solve these problems have not yet 
been established. 

This paper presents three selective SFEM schemes 
to solve the problems of incompressible and shear 
locking. The three selective schemes are formulated 
based on the three selective integration FEM schemes 
with similar properties found between the number of 
smoothing cells in the SFEM and the number of Gaus-
sian integration points in the FEM.     

1 Smoothed Finite Element Method 
1.1 Finite element method[3,7-9] 

The discrete equations for the finite element method 
are generated from the Galerkin weak form  

( ) ( ) ( )

( )

T T

T

d d

d 0
t

S S
Ω Ω

Γ

Ω Ω

Γ

∇ δ ∇ − δ −

δ =

∫ ∫

∫

u D u u b

u t     (1) 

where D is the material property matrix, ( )1H Ω∈u  
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are trial functions, and ( )1
0H Ωδ ∈u  are test functions. 

Here 1( )H Ω  denotes the Sobolev space of functions 

with square integrable derivatives in Ω  and ( )1
0H Ω  

is the subset of 1( )H Ω  with vanishing values on uΓ . 
The FEM uses the following trial and test functions:  

( ) ( )
NP

h

1
I I

I =

=∑u x N x d , 

( ) ( )
NP

h

1
I I

I =

δ = δ∑u x N x d           (2) 

where NP is the number of nodes in the element, 
[ ]TI I Iu v=d  is the nodal displacement vector, and 

( ) 0
( )

0 ( )
I

I
I

N
N

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x
N x

x
 is the shape function ma-

trix which satisfies the conditions 

( )I J IJN = δx ,  ( )
NP

1

1I
I

N
=

=∑ x       (3) 

where IJδ  is the Kronecker delta.  

By substituting the approximations hu  and hδu  
into the weak form and invoking the arbitrariness of 
virtual nodal displacements, Eq. (1) can be written as 
the standard discretized algebraic system of equations 

FEM =K d f                (4) 

where FEMK  is the stiffness matrix and f is the 
element force vector with entries of  

FEM T dIJ I J
Ω

Ω= ∫K B DB            (5) 

T T( ) d ( ) d
t

I I I
Ω Γ

Ω Γ= +∫ ∫f N x b N x t       (6) 

with the strain matrix defined as 
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    (7) 

1.2 Smoothed finite element method[5,6] 

The SFEM combines the standard FEM procedure with 
a strain smoothing operation. SFEM uses elements as 
in the FEM with smoothing operations performed over 

the smoothing cells. The final discretized algebraic 
system of equations has the form  

SFEM =K d f                (8) 

where SFEMK  is the smoothed stiffness matrix given 
by  

SC SC
SFEM T T

1 1

d
C

IJ CI CJ CI CJ C
C C

A
Ω

Ω
= =

= =∑ ∑∫K B DB B DB� � � �   (9) 

where d
C

CA
Ω

Ω= ∫  is the smoothing cell area CΩ , 

SC is the number of smo 1 2 SC= ∪ ∪ ∪"Ω Ω Ω Ω oth-
ing cells in element Ω  such that and 1 2Ω Ω∩ ∩"  

SC∩ =Ω ∅, and CIB�  is the smoothed strain matrix 
obtained by the following strain smoothing operation:   

( ) ( )h h d
C

C C
Ω

Φ Ω= ∫�ε ε x x          (10) 

where ( )h h ( )S= ∇ε x u x  is the strain obtained from 

the displacement with compatibility and ( )CΦ x  is a 

given smoothing function that satisfies at least the 
unity property   

( )d 1
C

C
Ω

Φ Ω =∫ x             (11) 

The following constant smoothing function  

( )
1/ , ;

0,
C C

C
C

A Ω
Φ

Ω
∈⎧
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x
x

x
        (12) 

and the divergence theorem can be used to get the 
smoothed strain in the domain CΩ  

h h h1 1( ) d ( )d
C C

C S S
C CA A

Ω Ω

Ω Ω= ∇ = ∇ =∫ ∫�ε u x u x  

h1 ( ) ( )d
C

C
CA

Γ

Γ∫ n x u x          (13) 

where CΓ  is the boundary of the domain CΩ  and 
( )Cn x  is the outward normal vector on the boundary 

CΓ . 
Substitution of Eq. (2) into Eq. (13) gives the 

smoothed strain as 
NP

h

1
C CI I

I =

=∑ ��ε B d             (14) 

where the smoothed strain matrix CIB�  is  
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(15) 
The SFEM has been proven to be energy consistent 

with very nice monotonic convergence properties[6]. 

2 Three Selective SFEM Schemes 

Liu et al.[5,6] theoretically and numerically showed that 
the solution of SFEM with one smoothing cell (SC=1) 
has similar properties to the FEM using reduced inte-
gration. The element stiffness matrix will contain spu-
rious zero energy modes and the global stiffness matrix 
can still be singular after imposing essential boundary 
conditions depending on the problem. SFEM solutions 
with more than one smoothing cell (SC>1) can avoid 
spurious modes and give stable results. This property is 
quite similar to that of the FEM using full Gauss inte-
gration. Hence, the similarities enable easy application 
of all three schemes of selective integration for the 
FEM (S1, S2, and S3) into the SFEM. The advantage 
of the SFEM is that it has more choices than the FEM 
in choosing the number of smoothing cells being larger 
than one (SC>1). In this paper, four smoothing cells 
will be used mainly to simplify the analysis.  

2.1 Scheme 1  

This scheme does not experience incompressible lock-
ing[3]. The material property matrix D  for isotropic 
materials may be written as 

= +D D D               (16) 
where D  is the µ -part of D  and D , the remain-
der, is theλ -part, in which µ  is the shearing modulus, 

2
1 2
νµλ
ν

=
−

 is Lame’s parameter, and ν  is Poisson 

ratio.  
Specifically, the material property matrices for vari-

ous problems are written as follows. 

For plane strain,  
2 0 2 0 0

2 0 0 2 0
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1 1 0
1 1 0
0 0 0
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where  
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µ
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λ
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For axis-symmetric geometries,  
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0 0 0 2 1 1 0 1

µ λ
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For three-dimensional geometries, 
2 1 1 1 0 0 0

2 1 1 1 0 0 0
2 1 1 1 0 0 0
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1 0 0 0 0 0 0

1 0 0 0 0 0 0

µ λ
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D  

+D D                 (19) 
Using Eq. (16) in Eq. (9) gives 

SFEM SFEM SFEM
IJ IJ IJ= +K K K          (20) 

where 
SC

SFEM T

1
CJ CIJ CI

C

A
=

=∑ � �K B DB          (21) 

SC
SFEM T

1
CJ CIJ CI

C
A

=

= ∑ � �K B DB         (22) 

Selective smoothing (first scheme, S1) refers to the 
use of SC=1 only on D  (related to the λ  term), and 
SC>1 on D  (related to the µ  term). Uniform 
smoothing refers to the use of SC=1 on both D  and 
D  for uniform smoothing. 

With scheme 1, the SFEM solution has the follow-
ing properties: 

(1) Ensure reduction of the stiffness matrix SFEM
IJK  

of the element. Since / 1λ µ � , SFEM
IJK  is propor-
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tional toλ , and SFEM
IJK  is proportional to µ , the nu-

merical values of the terms in SFEM
IJK  tend to be very 

large compared with those in SFEM
IJK . Therefore, when 

using SC=1 for SFEM
IJK , the stiffness matrix SFEM

IJK  
is considerably reduced. 

(2) The rank of the stiffness matrix is ensured cor-
rectly. The disadvantage of uniform smoothing is that 
the rank of the element stiffness may be reduced, re-
sulting in singularity of the global matrix. Selective 
smoothing retains the correct rank of the element stiff-
ness; therefore, the global stiffness also possesses the 
correct rank. This follows from the fact that SFEM

IJK  is 

positive definite, so SFEM
IJK  does not need to be con-

sidered when determining the rank of the entire stiff-
ness matrix. 

(3) Selective smoothing is effective for nearly in-
compressible cases. SFEM

IJK  is the part of the stiffness 
matrix that describes the volumetrically stiff behavior. 
Hence, SFEM with SC>1 tends toward incompressible 
locking. Hence, the use of SC=1 with SFEM

IJK  will al-
leviate this tendency. 

2.2 Scheme 2 

The second scheme, also called the B-bar approach[3,4], 
is for handling problems with nearly incompressible 
locking for anisotropic and/or nonlinear situations. 

The strain-displacement matrix of a smoothing cell 
of an element may be expanded in terms of nodal sub-
matrices as 

1 2 NPC C C C⎡ ⎤= ⎣ ⎦
� � � �…B B B B        (23) 

where 1 SCC≤ ≤ . In three-dimensional analyses, a 
typical sub-matrix, CaB� , 1 NPa≤ ≤ , can be written 
as 

1

2

3

3 2

3 1

2 1
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0
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C
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B
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B
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⎡ ⎤
⎢ ⎥
⎢ ⎥
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��
� �

� �
� �

         (24)  

in which  
1 1d di

C C

a
Ci a x

C i C

NB N n
A x A

Ω Γ

Ω Γ,∂
= =

∂∫ ∫�  

1 3i≤ ≤                (25) 
where aN  is the shape function associated with node 
a and xi is the i-th Cartesian coordinate. 

These are the standard expressions, but they must be 
modified to be successfully applied to volumetrically 
stiff materials. Let dil

CaB�  denote the dilatational part of 

CaB� , i.e. 

1 2 3

1 2 3

1 2 3dil 1
3 0 0 0

0 0 0
0 0 0

C C C

C C C

C C C
Ca

B B B
B B B
B B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B

� � �
� � �
� � ��         (26)  

The deviatoric part of CaB�  is then defined as 
dev dil

CaCa Ca= −B B B� � �             (27) 

To achieve an effective formulation for nearly-
incompressible applications, dil

CaB�  needs to be re-
placed by an “improved” dilatational contribution, de-
noted by 

1 2 3

1 2 3

1 2 3dil 1
3 0 0 0

0 0 0
0 0 0

C C C

C C C

C C C
Ca

B B B
B B B
B B B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B         (28) 

dil
CaB  will be calculated using SC=1. This is quite 

similar to the use of the mean value of CiB�  to calcu-
late the dilatational contribution in the scheme 2. In 
place of CaB�  now employ 

dev dil
Ca Ca Ca= +B B B�            (29) 

Finally, the normal SFEM procedure (SC>1) is used 
to calculate the stiffness matrix. 

A modified B-Bar method for plane strain can be 
developed by modifying the standard B-Bar method 
which satisfies the 0zε =�  condition only in the weak 
sense. To exactly satisfy 0zε =�  at any point within 
the element, the B-Bar method can be constructed by 
replacing the dil

CaB�  matrix by a mean
CaB�  matrix[10], 
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1 2

mean
1 2

1 1
2 2
1 1    
2 2
0 0

C C

C CCa

B B

B B=

� �

� � �B           (30) 

which corresponds to use of a “modified” mean strain 

( )*m
1
2 x y= +� � �ε ε ε  instead of the standard mean strain 

( )m
1
3 x y z= + +� � � �ε ε ε ε .   

2.3 Scheme 3 

The third scheme is for dealing with shear locking[1]. 
The solution of plate and shell problems by independ-
ent specification of slopes and middle surface dis-
placements is attractive due to its simplicity and its 
ability to reproduce shear deformation. Unfortunately, 
elements of this type become much too stiff as the 
thickness is reduced. 

With the SFEM, one way to obtain a suitable im-
proved flexibility is simply to use the different smooth-
ing schemes for the individual components of the inte-
grand of the stiffness matrix. The use of SC>1 for the 
“bending” and “membrane” parts (for the shell) and 
SC=1 for the “shear” part leads to a formulation which 
is free from shear locking without hurting convergence 
properties.  

(1) For the plate problem[11] 
Depending on the FEM formulation, the SFEM ex-

pression to compute the stiffness matrix for a standard 
plate element is 

SC3
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0
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η
⎡ ⎤

= ⎢ ⎥
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(2) For the shell problem (shells made of in-plane 
and bending elements)[11] 

The shell element stiffness matrix is given by 
b b b

m m m

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎣ ⎦ ⎩ ⎭ ⎩ ⎭

0
0

K d F
K d F

         (35) 

where K indicates the stiffness matrix, d indicates the 
general nodal displacement vector, and F indicates the 
general nodal force vector. The matrices and vectors 
consist a plate bending part and a plate stretching part. 
Subscripts b and m denote bending and membrane 
(stretching) deformations of the shell element. 
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Because shell elements are oriented differently, a  

transformation matrix T  needs to be used to trans-
form the local matrices to the global matrices, 

global T local=K T K T , global T local=F T F   (42)  
Scheme 3 of the SFEM for plate and shell problems 

uses SC>1 for the “bending” and “membrane” parts 
(for the shell) and SC=1 for the “shear” part which 
leads to a formulation which is free from shear locking. 
However, calculation of the “shear” part still uses 
Gauss integration to calculate IN−  of sI

�B , because 
the integration of IN−  in the domain Ω  cannot be 
transformed to a line integration on the boundary ΩΓ . 
This may be one disadvantage of SFEM since the 
Gauss integration still has to be used for plate and shell 
problems.  

3 Numerical Examples  
3.1 Infinite plate with a circular hole 

This example compares the efficiency of schemes 1 
and 2 used in the SFEM and in the FEM for an incom-
pressible locking problem. 

Figure 1 represents a plate with a central circular 
hole, radius a=1 m, subjected to a unidirectional tensile 
load of 1 N/mσ =  at infinity in the x-direction. 

 
Fig. 1 Infinite plate with a circular hole subjected to unidirectional tension and the one quarter computational domain 

Due to symmetry, only the upper right quadrant of 
the plate is modeled using 4-node elements as shown 
in Fig. 2. Plane strain condition is considered with 

21.0 kN/mE =  and 0.499 999ν = . Symmetric con-
ditions are imposed on the left and bottom edges and 
the inner boundary of the hole is traction free. The ex-
act solution for the stress[12] is  

2 4

11 2 4
3 31 cos 2 cos 4 cos 4 ,
2 2

a a
r r

σ θ θ θ⎡ ⎤= − + +⎢ ⎥⎣ ⎦
 

2 4

22 2 4
1 3cos 2 cos 4 cos 4 ,
2 2

a a
r r

σ θ θ θ⎡ ⎤= − − −⎢ ⎥⎣ ⎦
 

2 4

12 2 4
1 3sin 2 sin 4 sin 4
2 2

a a
r r

τ θ θ θ⎡ ⎤= − + +⎢ ⎥⎣ ⎦
  (43) 

where ( ),r θ  are the polar coordinates with θ  

measured counterclockwise from the positive x-axis. 
Traction boundary conditions are imposed on the right 
( 5x = )  and  top ( 5y = )  edges  based  on  the  exact 
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solutions Eq. (43). The displacement components cor-
responding to the stresses are 

( ) ( )( )1 1 cos 2 1 cos cos3
8
a r au

a r
κ θ κ θ θ

µ
⎡= + + + + −⎢⎣

3

32 cos3 ,a
r

θ
⎤
⎥
⎦

( ) ( )( )2 3 sin 2 1 sin sin 3
8
a r au

a r
κ θ κ θ θ

µ
⎡= − + − + −⎢⎣

 

3

32 sin 3a
r

θ
⎤
⎥
⎦

              (44) 

 
Fig. 2 Domain discretization of the infinite plate with 
a circular hole using 4-node elements 

where ( )( )/ 2 1Eµ ν= +  and κ  is defined in terms 

of Poisson ratio as 3 4κ ν= −  for plane strain cases. 
The following displacement error norm is used to 

examine the computed results. 
dof dof

h
d

1 1

n n

i i i
i i

e u u u
= =

= −∑ ∑          (45) 

where ndof is the total number of degrees of freedom in 
the problem, iu  is the exact solution and h

iu is the 

numerical solution.  
Table 1 presents the strain energy, while Table 2 pre-

sents the displacement norm of the infinite plate for 
various meshes. The results show that both the FEM 
using full Gauss integration and the SFEM using SC=4 
for all elements fail to give the correct results due to 
the incompressible locking, while both the SFEM and 
the FEM using schemes 1 and 2 overcome the incom-
pressible locking phenomenon to give results that 
compare well to the exact solution. Comparison be-
tween the FEM and SFEM shows that the SFEM using 
schemes 1 and 2 gives better results than those of the 
FEM because the SFEM stiffness matrix is not as stiff 
as that of the FEM using full Gauss integration[6]. In 
addition, the results also show that scheme 2 gives bet-
ter results than scheme 1. 

Table 1 Strain energy T1
2

u P  for the nearly incompressible case: .  0 499 999ν =             (×10−2) 

Mesh SFEM (S1) SFEM (S2) FEM (S1) FEM (S2) 
SFEM 

(SC = 4) 
FEM 

(4 Gauss ) 
Exact 

4×4 0.9603 0.9620 0.9588 0.9609 0.9124 0.9123 0.9770 
8×8 0.9738 0.9743 0.9733 0.9740 0.9213 0.9212 0.9770 

12×12 0.9761 0.9763 0.9759 0.9761 0.9226 0.9225 0.9770 

Table 2 Displacement norms of the infinite plate for the nearly incompressible case: .  ν 0 499 999=       (%) 

Mesh SFEM (S1) SFEM (S2) FEM (S1) FEM (S2) 
SFEM 

(SC = 4) 
FEM 

(4 Gauss ) 
4×4  

(25 nodes) 
1.87 1.81 2.08 1.84 15.98 15.98 

8×8 
(81 nodes) 

0.42 0.39 0.50 0.40 16.73 16.73 

12×12 
(169 nodes) 

0.17 0.16 0.20 0.16 17.30 17.30 

 

3.2 Semi-infinite plate 

This example also compares the efficiency of schemes 

1 and 2 in the SFEM and in the FEM for an incom-
pressible locking problem. 

The semi-infinite plate shown in Fig. 3 is studied 
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subjected to a uniform pressure within a finite range 
( a x a− ≤ ≤ ). The plane strain condition is consid-
ered. The analytical stresses are given by 

( )

( )

[ ]

11 1 2 1 2

22 1 2 1 2

12 1 2

2 sin 2 sin 2 ],
2π

2 sin 2 sin 2 ],
2π

cos 2 cos 2
2π

p

p

p

σ θ θ θ θ

σ θ θ θ θ

τ θ θ

⎡ ⎤= − − +⎣ ⎦

⎡ ⎤= − + −⎣ ⎦

= −    (46) 

The directions of 1θ  and 2θ  are indicated in Fig. 
3. The corresponding displacements can be expressed 
as 
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(47) 
where H ca=  is the distance from the origin to point 
O', the vertical displacement is assumed to be zero and 
c is a coefficient. 

 
Fig. 3 Semi-infinite plate subjected to a uniform 
pressure 

Due to the symmetry about the y-axis, the problem 
is modeled with a 5 5a a×  square with 0.2 ma = , 

100,c = and 1 MPa.p =  The left and bottom sides 
are constrained using the exact displacements given by 
Eq. (47) while the right side is subjected to tractions 
computed from Eq. (46). The domain is discretized as 
shown in Fig. 4. Four smoothing cells are used for 

each element. The displacement norm is given in Eq. 
(45) and the energy norm is defined as 

( ) ( )
1

2
T

e
1 d
2

h he
⎡ ⎤

= ⎢ − − ⎥
⎢ ⎥⎣ ⎦
∫
Ω

Ωε ε D ε ε       (48) 

 
Fig. 4 Domain discretization of the semi-infinite plate 
using 4-node elements 

Table 3 presents the displacement norm, while Table 
4 presents the energy norm of the semi-infinite plate 
for various meshes. The results again show that both 
the FEM using full Gauss integration and the SFEM 
using SC=4 for all elements fail to give correct results 
due to the incompressible locking, while both the 
SFEM and the FEM using schemes 1 and 2 overcome 
the incompressible locking phenomenon to give results 
that compare well to the exact solution. Comparison of 
the FEM and the SFEM shows that the SFEM using 
schemes 1 and 2 gives better results than the FEM. In 
addition, the results also show that scheme 2 gives bet-
ter results than scheme 1. This along with its general 
applicability ensures wide application of scheme 2 for 
incompressible locking problems.   

3.3 Square plate subjected to a concentrated load 
at the center[11] 

This example shows that the SFEM with scheme 3 
overcomes shear locking in a plate problem. 
 A simply supported square plate is subjected to a 
concentrated load at the center. The plate is the side 
lenth 25.4a = cm and its thickness t changes from 
0.127 cm to 5.08 cm. The plate is made of the steel 
whose elastic modulus 6206.84 10E = ×  kPa and 
Poisson ratio is 0.3. The applied force is 177.93 N at 
the center. A quarter of the plate is modeled due to 
symmetry and it is divided into sixteen 4-node ele-
ments as shown in Fig. 5.

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
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Table 3 Displacement norm of the semi-infinite plate for the nearly incompressible case: .  0 499 999ν =         (%) 

Mesh SFEM (S1) SFEM (S2) FEM (S1) FEM (S2) 
SFEM 

(SC = 4) 
FEM 

(4 Gauss )
  97 0.480 0.460 0.500 0.470 14.10 14.12 
 353 0.120 0.110 0.130 0.120 13.71 13.76 
 769 0.051 0.049 0.056 0.051 13.55 13.64 
1345 0.030 0.029 0.032 0.030 13.44 13.55 

Table 4 Energy norm for the nearly incompressible case: .  0 499 999ν =  

Mesh SFEM (S1) SFEM (S2) FEM (S1) FEM (S2) 
SFEM 

(SC = 4) 
FEM 

(4 Gauss ) 
  97 21.55 21.29 21.93 21.47 591.18 2999.64 
 353  9.62  9.44  9.82  9.56 327.00 1761.61 
 769  5.97  5.87  6.09  5.94 284.76 1259.26 
1345  4.29  4.20  4.33  4.24 268.61  990.50 

 
Fig. 5 Square plate subjected to transverse loading and its quarter model 

The analytical solution for the deformation at the 
center[13] is  

2
max 0.0116 Paw

D
=            (49) 

where P is the applied load at the center and 

( )
3

212 1
EtD =
−ν

. 

Figure 6 presents the normalized displacement 

2

wD
Pa

 at the center versus the thickness. The results 

show that the FEM using full Gauss integration and the 
SFEM using SC=4 for all bending and shearing parts 
give divergent results as the plate thickness is reduced 
due to shear locking. However, the SFEM and the 
FEM both using scheme 3 give results that converge to 
that of the thin plate as the plate thickness is reduced.  

3.4 Barrel vault shell subjected to its own 
weight[11] 

This example shows that the SFEM with scheme 3  

 
Fig. 6  Displacement at the center versus the thick-
ness parameter 

overcomes shear locking in a shell problem. 
The barrel vault has a radius of 7.62 m, subtended 

angle of 80°, length of 15.24 m, and thickness of 7.62 
cm. The structure has an elastic modulus of 

20.684E = GPa, Poisson ratio of 0, and weight of 
5.382 kg/m2. The two curved edges are assumed to be 
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supported by rigid diaphragms and the other two edges 
are free. Because of symmetry, only a quarter of the 
structure is modeled as shown in Fig. 7. The analytical 
solution for the vertical deflection of the middle of the 
free side is 9.406 cm[14]. 

Table 5 lists the vertical deflection at the middle of 
the free edge. The results show that both the FEM us-
ing full Gauss integration and the SFEM using SC=4 
for all bending, membrane, and shearing fail to give 
the correct results due to shear locking, while the 
SFEM and the FEM both using scheme 3 overcome 
this shear locking to give good results. Moreover, the 
SFEM result is better than that of the FEM due to the 
smaller stiffness of the SFEM matrix. 

 
Fig. 7  Barrel vault with discretization scheme

Table 5 Vertical deflection at the middle of the free edge                      (cm) 

Mesh 
FEM 
(S3) 

SFEM (S3) 
FEM 

(Full Gauss integration) 
SFEM SC=4 for all bending 

and shearing 
Analytical solu-

tion 
4×4 8.912 9.396 0.402 0.523 9.406 

 

4 Conclusions 

This paper describes three selective SFEM schemes. 
The formulation and numerical examples show that the 
SFEM can efficiently solve problems with incom-
pressible locking and shear locking by splitting the 
strain energy into parts and applying different numbers 
of smoothing cells to these parts in calculating the 
stiffness matrix. The SFEM works well for 2-
dimensional elasticity problems because the strain gra-
dient matrix has only derivatives of the shape functions 
and integration on the domain can be transformed to 
line integration on the boundary. However, for plate 
and shell problems, because the strain gradient ma-
trix of the shear part s

�B  includes the shape functions 
themselves, the integration of the shape functions on 
the domain can not be transformed to line integra-
tion on the boundary. Therefore, the line integration is 
used in the SFEM for the derivatives of the shape func-
tions, and the Gauss integration is used for the shape 
functions themselves.  

SFEM schemes 1 and 2 are both free from nearly in-
compressible locking, but scheme 2 is more general 
and gives better results than scheme 1. Scheme 2 can 
be applied for anisotropic and nonlinear situations, 
while scheme 1 can only be applied for isotropic and 

linear situations. SFEM scheme 3 is free from shear 
locking and can be applied to plate and shell problems.  

In general, the SFEM with the three schemes, 
scheme 1, scheme 2, and scheme 3, gives better results 
than the FEM with these schemes mainly because the 
SFEM stiffness matrix is not as stiff as that of the FEM 
using full Gauss integration[6]. 
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2007 English Summer Camp Opens 
 
 
Tsinghua launched its fourth English Summer Camp on July 9, 2007 for nearly 3200 students who have just com-
pleted their freshman year. 

The English Summer Camp features a flexible learning style, the students can choose from four ways of learning. 
The four learning styles include intensive training in listening and speaking, comprehensive knowledge training, 
internet self-study, and overseas studies. 

A series of activities including lectures, singing competition, movies, dance, and Camp Store will be held to help 
the students learn more about foreign cultures. 

More than 130 foreign teachers and foreign volunteers took part in the camp. 
 

（From http://news.tsinghua.edu.cn，2007-07-13） 
 




